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1. Introduction

Numerical approaches for the solution of vector fields (differential equations
defined on a manifold) have attracted wide attention over the past few years.
This paper first reviews the various numerical approaches available in the lit-
erature for the solution of vector fields namely, Parameterization approach,
Constraint Stabilization approach, and Perturbation approach (PA). In the
process, the paper also makes the following useful contributions: an expanded
analysis and a new perturbation scheme for the PA; and a new way of choosing
integration error tolerances for the parameterization approach.

The paper is organized as follows. In Section 2, we define vector fields and
discuss some applications. The various existing approaches for the solution
of vector fields are discussed in Section 3. In Section 4, a comparison of
all the approaches is carried out, both by means of a crude cost analysis
as well as by studying their numerical performance on examples of vector
fields arising from constrained mechanical systems (CMS). In the final sec-
tion based on this comparison, recommendations are made for a proper
choice of a suitable approach. Overall, the PA performs better than the other
approaches.

2. Vector fields

We begin by formally defining the vector field that is to be solved numerical-
ly. Let .# be an (n — m) dimensional manifold in R” defined by

g(x) = 0, 2.1)
where g: R” — R™ is a smooth function. Assume that 3 an open set ¢ in R”
containing .# such that g.(x), the m xn Jacobian of g at x, satisfies
rank(g,(x)) = m Vx € €. Let

= % =f(x), t€[tt] (2.2)

define a vector field on .#. In other words, if 7,.# denotes the tangent space of
M atx € M, then f(x) € T,.# Vx € .#. Usually a smooth extension of f to an
open set in R” containing .# is available. We will assume this to be the case for,
when dealing with numerical methods points slightly off from .# are obtained
and there may be a need to evaluate f there.

Remark 2.1. Our assumption that g and f are time invariant, i.e., they do not
explicitly depend on ¢, is only for the purpose of simplifying the notations and
some of the discussions and most of the ideas can be extended to time varying
case. The case of time-varying g and f is discussed in detail in Refs. [1,2].
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2.1. Numerical solution of vector fields

Let us assume that the vector field (2.2), is solvable, i.e., given any x, € .#
there exists a unique solution, x: [t,#;] — # that satisfies x(¢) = x, and
(2.2). See Ref. [3] for some theory on solvability. Our aim is to obtain a numer-
ical approximation of x(-). Since the facts, xo € .# and x(-) satisfies (2.2), auto-
matically guarantee g(x(¢)) = 0 V7 € [to, #/], we could simply ignore (2.1) and
numerically solve (2.2) using a well-known integration [4-8] method for ordi-
nary differential equations (ODEs) to obtain an approximate solution, ().
There are two strong objections to such an approach which excludes (2.1) from
the solution process: (i) X may violate (2.1) badly; and (ii) the information that
(2.1) is an invariant along the solution can be used to check, and perhaps im-
prove, the accuracy of the solution i.e., any available additional information
when used properly can set a better solution in terms of accuracy. Let us go
in to these issues in more detail.

Suppose (2.2) is integrated using global error control, i.e., given a tolerance
7, X satisfies

IX(1) —x(0)|| <Vt € [to, 1], (2.3)

where || - || is an appropriate norm of R”" used in integration. Take g, the ith
component of g. Fixing ¢, the first-order truncated Taylor series of g’ expanded
around x(¢) and evaluated at x(¢) is

g(%(1) = g (x(1) + g, (m) (X(r) — x(1)) = g, (n,) (x() — x(1)), (2.4)
where #, is some point on the line segment joining %(¢) and x(¢) and g’ is the ith
row of g,. Thus

&' GO < lige ()l 1x(8) = x(Ol < llge (). (2.3)

Therefore, if for each 7, g is a bounded function with a reasonable bound on its
norm, then the violation of (2.1) will not be severe.

Unfortunately, the current state of research in global error control is weak [5].
The paper by Skeel [9] explains several ways of handling global errors in ODEs.
Also, methods which try controlling the global error are very expensive. All pop-
ular integration codes only employ local error control where integration is done
via anumber of successive time steps, the computationsin one time step being done
asifintegration in the previous time steps was done exactly. When local error con-
trol is used, the violation of (2.1) can build up and become huge for large ¢. Since
(2.1)is a fundamental constraint in our problem, a huge violation of it is certainly
objectionable. The following example illustrates a case of severe violation in (2.1)

Example 2.1. Let x = (x!,x?). Consider the oscillator equations,

©=xt = (2.6)
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defined on the manifold .# whose describing equation is g(x) = (x')’+
(x2)* = 1 = 0. Suppose x = (1,0) and that the differential equations are solved
by a first-order Taylor series method with local error control, the local error
estimate being provided by the second-order derivative of x. Let = denote the
relative tolerance used in doing the integration.
More precisely, the details of going from x,, the solution approximant at
t =t 10 X341 At {1 = 4 + h are as follows. Given A, the first-order Taylor se-
ries formula gives x;,; = x; + hfk, where f, = (x?, —x}). Suppose v(t, + ) de-
notes the true local solution, i.e., the solution of (2.6) with the initial
condition v(#) =x;. Define e(h), the relatxve local error tolerance as
e(h) = |xes1 — o(te + B)||/lIxell, where || = (x!)* + (x2)*. An estimate of
e(h) is h?/2. This is obtained from the second-order Taylor series approxima-
tion, v(ty + h) = x¢ + hfi + (h2/2)sk, where s, = (—x}, —x?). Since the aim is to
keep e(h) < 7, the optimum step size based on the error control is # = v/2t. This
is, roughly, the way most numerical methods do local error control.
Suppose integration is done until one revolution is complete, i.e., until x!
changes from a negative to a positive value. A closed form expression for
g(xx) can be obtained as follows. Observing that  |Jxea /|1 =
(14 #2) = (1 +21), we get g(xx) = (1 +27)* — 1. The number of integration
steps needed to complete a revolution, N, can be obtained as [2n/6], where:
# = tan~'v/27 is the angle made by x; and x;,, at the origin; and, for y € R,
[#] = the smallest integer which is greater than or equal to u. Table 1, which
gives g(xy) for various t values, clearly points to an alarming violation of

glx) =

In this example the cause of growth in the size of g is basically due to the
inadequacy of local error control to maintain the global error within reason-
able values. There is an unstable growth in the global error which is contribut-
ed by both, the problem solved and the method used. Although, typically, the
growth of global error is not as bad as in this example, there is always an un-
certainty in the effect of local errors on the global error. Therefore, when local
error control is employed to solve (2.2), it is important to enforce (2.1) in the
solution process. It will be ideal to require the numerical approximation, ¥(-) to
satisfy (2.1) for all ¢. If that is difficult, it will even be sufficient if %(-) satisfies
(2.1) at the end points of each integration time step because, an analysis similar
to (2.3)~2.5) that uses the local solution v(-) instead of x(-), can then be used to
obtain reasonable bounds on ||g(¥(¢))|| at other values of ¢.

Table 1
Constraint violation for various tolerances
T 101 102 103 10-4 103 10-¢

glxy) 14.4 1.437 0.3254 0.093 0.0285 0.0089
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In Example 2.1 the growth in the violation of (2.1) has provided a valuable
means of detecting the deterioration in solution accuracy. (Note, however, that
(2.1) is only a partial check because satisfying (2.1) well does not mean that the
error in the solution is small.) Furthermore, (2.1) can be useful in other ways.
Appropriate corrections on the numerical solution of (2.2), incorporated to
force (2.1), may lead to a more accurate solution of (2.2). This is our belief
and we will give supporting arguments to this in Section 3.4, where we discuss
the PA. For instance, in Example 2.1 suppose we do the following alteration
(manifold  correction) after each  integration step:  compute
p=arg min {|jx.— xc1|: g(x) = 0}, the point on .# closest to x..,, and reset
xr;1 := p. Then we get a much more accurate solution than before. Such a cor-
rection, in fact, forms the basis of the PA.

2.2. Applications

The problem of numerically solving (2.1), (2.2) arises in a number of appli-
cations such as CMS, flexible multibody systems [10,11] simulation of control
systems modeled by DAEs, semiconductor device simulation [12], numerical
curve tracing [13], homotopy curve tracing, handling physical invariants, and
constrained optimization. Here we highlight a few important ones.

(a) CMS: Euler-Lagrange equations: The Euler-Lagrange equation that de-
scribes the motion of CMS can be written in the form:

M(q)§ +J'(9)A = 0(4,9), (2.7)
0= ¢(q), ' : (2.8)

where ¢ € R” is the vector of generalized coordinates, M(g) € R™" is the gen-
eralized mass matrix, ¢: R® — R™ is a nonlinear mapping that defines the con-
straints (kinematical), J = 3¢ /8q is the Jacobian of ¢ with respect to g (J*
denotes the transpose J), A € R™ is the vector of Lagrange multipliers associat-
ed with the constraints, and @: R” x R" — R" is a mapping that defines gener-
alized external forces. Here time invariance of M, ¢, Q, and J is assumed only
to simplify the notations. The system of equations (2.7), (2.8) is an index-3
DAE. The index can be lowered by a procedure called index reduction. The in-
dex-1 form of the Euler-Lagrange equations can be written as,

M(g) JNd) _ | 94.9
[J on}‘[v(q,q)]’ @9
$(9) =0, $=JG=0.

From the second derivative of ¢ we have J§ — v(¢,q) = 0. Under reasonable
assumptions on M and J, the linear system in § and A defined by (2.9) has a
unique solution § = £i(4,q); 4= fa(¢,q). If we let g =v, x = (g,v)" then we
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have ¢ = v; ¢ = f1(¢,q), together with ¢(g) = 0; Jv = 0. The above equations
can be written in the form:

i = f(x), , (2.10)
g(x) =0, (2.11)

respectively. Eq. (2.10) defines a vector field on the constraint manifold defined
by (2.11) and it has some special structure which should be exploited while im-
plementing. In Ref. [14] equation of motion for CMS is derived using D’Alem-
bert principle.

Each f-evaluation involves the solution of the linear system (2.9), whose co-
efficient matrix has a nice (2 x 2) block structure. In most practical examples in
CMS, the matrices M (q) and J(g) are sparse. Special techniques like block fac-
torization, parallel processing techniques and sparse matrix algorithms should
be employed. For large systems it is advantageous and preferable to use itera-
tive methods i.e., solving the linear system as an optimization problem [15,16].
Also note that ¢ is linear in v, and ¢ does not involve v. These facts can be nice-
ly utilized during the numerical solution of the vector field.

(b) Simulation of control systems modeled by DAEs. When deriving models
of physical systems from first principles, the result is often a system of DAEs
(written in first-order form) of the type,

F(x,x) =0, (2.12)

where F: R” — R". Eq. (2.12) is the most reasonable and user convenient rep-
resentation for model libraries. If (2.12) is such that x can be solved as a func-
tion of x then (2.12) is simply an ODE. If not, the complexity of numerically
solving such DAESs is measured by a positive integer quantity called the index.
Good numerical methods are available for systems of index one [17]; in fact an
excellent and popularly used code called DASSL [18] is available for solving
such systems. For systems whose index is greater than one, good general pur-
pose numerical methods are not well discussed in Ref. [6].

A DAE is equivalent to a vector field. However, a difficult process called in-
dex reduction is needed to convert a DAE of the form (2.12) (if it is of higher
order) to the form (1.1), (1.2). There is an approximation of this process called
structural index reduction, due to Panteleides [19] which is very simple and ef-
ficient. Also, on a number of DAESs arising from practical control system mod-
els, structural index reduction does give proper index reduction. Thus, for such
DAESs, structural index reduction combined with the approaches discussed in
this paper yields neat as well as valid solutions.

(¢) Handling physical invariants: For many physical systems whose dynamic
equations are of the form (2.2), the physics of the system dictates that certain
physical quantities, such as the net charge or the total energy, be conserved,
i.e., an equation of the form ¢(x) = 0, is satisfied where c: R* — R. In many
systems, the satisfaction of ¢(x) = 0 by the numerical solution is important
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because the solution can lead to erroneous behavior otherwise. Thus all the
crucial conservation laws of the form c(x) =0 must be collected to form
(2.1) so that, when (2.1), (2.2) is numerically solved the conservation law is al-
ways satisfied.

(d) Constrained optimization: Consider the problem,

min p(x) s.t. g(x) =0, (2.13)

where p: R — R and g: R" — R™ are continuously differentiable functions.
Let # = {x: g(x) =0}. For x € .#, define f(x) to be the projection of
— 7 p(x) on to T,.#. The gradient projection method, is a good way of solving
(2.13). One iteration of this method consists of using a recurrence of the form

Xp41 = X + hkf(xk) (214)

and then correcting x;.1 so as to make x;.; € .#. A continuous realization of
(2.14) is (2.2). Thus the vector field, (2.1), (2.2) results. Under reasonable as-
sumptions it can be shown that, the solution of (2.2) starting from a random
xo € . converges to a local minimum of (2.13) with probability one. Thus a
numerical solution of the vector field can be effectively used to find a local min-
imum of (2.13).

3. Existing approaches k

The three main approaches for numerically solving vector fields are the fol-
lowing: Parameterization, Constraint Stabilization, and Perturbation. In this
section we give a self-contained discussion of these approaches. In the process,
we make two useful contributions: (1) for the Parameterization approach, we
suggest a simple way of doing proper integration error control of the system
variables; and (2) for the PA, we give a much more expanded analysis than that
given by Shampine [20]. We begin this section by discussing a common tool
that is used by all the three approaches: solution of a system of nonlinear equa-
tions.

3.1. Solution of nonlinear equations

Most of the approaches for solving vector fields require a procedure that
finds a root of a square nonlinear system of equations the form, A(z) = 0, where
h: R™ — R™. For example such a problem is encountered when x is restricted to
an m-dimensional affine space and (2.1) is to be solved. We will see later that, in
the PA, the manifold correction after each integration step involves the solu-
tion of nonlinear equations of the above form and in the case of Parameteriza-
tion and Exact constraint stabilization approaches (ECS), every derivative
function evaluation involves the solution of nonlinear equations. Usually z°,
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a very good guess of a root z*, is available. Therefore, a locally convergent
method such as the Newton-Raphson method will work well when started
from 2°. Since the evaluation of 4,(z) and its LU decomposition are expensive
one uses the modified Newton—-Raphson method (MNR) that uses the follow-
ing iteration:

=2 — [ (0] h(Z), 1=0. (3.1

It can be shown [21] that this method is locally convergent, but with a linear
rate of convergence. This is bad when compared to the nice quadratic rate of
convergence of the Newton-Raphson method. However, this slight loss is
made up by the savings made in avoiding the evaluation of 4,(z') and its LU
or / > 1. Let us rewrite (3.1) as

A 6z = —h(z"), (3.2)

where 4 = [h.(z°)] and 6z = Z/*! — 2!, Eq. (3.2) is a linear system and it is usu-
ally solved by computing the LU decomposition of 4.

The termination of the iteration process (3.1) is a very important factor to the
reliability and robustness of the software. We now propose a simple scheme for
the termination of the iteration process (3.1). Let us first define some important
parameters to be used in the scheme. Let: typ z be an m-dimensional vector whose
ith component is a positive scalar specifying the typical magnitude of z;, z € R”,
typ # be an m-dimensional vector whose ith component is a positive scalar spec-
ifying the typical magnitude of the ith component of the function 4(z) at points
that are not near the root of A(z). The vector typ 4 is used to determine the scale
factor vector S, and the diagonal scaling matrix D = diag[(S;),, ..., (S4),], where
(S), = 1/(typh,),i = 1,...,m. Now Dh(z') is a dimensionless vector whose com-
ponents have the same order of magnitude. We choose a positive scalar toler-
ance, htol and terminate the MNR iterations when

|DA(z")]| , < Atol. (33)

This is the basic idea behind the first scheme. The automatic selection of typ A
and # tol is explained next.

Let #;(z') denote the ith component of A(z’) and let 4’ denote the transpose
of the ith row of 4.(z°). Then a good estimate of typ 4;, the typical size of &;, is
given by

typh; = ]rg]agxm(la,-l max{lzjl,typz,})- (3.4)
If typ z is not available then we can simply replace (3.4) by
_ i ),0 _

typh = max (|a| I2]]). (3.5)

The only difficulty with (3.5) is that it is meaningless when z° 2~ 0. We now cal-
culate |[Dh||, as
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h;
ax
= pax max, ¢ < m (|} max{|z], typz;}) |

1DA]] o

For best accuracy, a good choice for 4 tol is-
htol=u. v, (3.6)

where u is the unit round off error of the computing machine used and v is fac-
tor included to take care of errors in computing A;(z’); a value of v = 100 mis a
reasonable choice [22]. An excellent discussion on floating representation, float-
ing arithmetic and rounding errors is given in Ref. [23). For computing the ma-
chine constants like », unit round off, base etc. for different computer systems, a
code called MACHAR [24] is available.

Since 2° is a very good guess of a solution to h(z) = 0, it is a good idea to
check ﬁrst if (3.3) holds for /=0. If it holds, then the computation of
[h( 0)] is unnecessary Also, if convergence according to (3.3) does not take
place till / = 4 (MAXITER), the method should be terminated as having failed.
and other measures, which yield an improved z° have to be taken.

One could also employ an alternative termination scheme, which is much
more detailed than the first. A good test of convergence of the MNR method,
for use in the solutions of stiff ordinary differential equations was suggested by
Shampine [25]. An MNR scheme implementing this test incorporates the inte-
gration error tolerances into the iteration termination process. Shampine’s idea
has also been implemented in the well-known DAE software, DASSL [18]. This
alternative scheme is nicely explained in Ref. [17]. It is more detailed and ex-
pensive than our scheme. We have experimented in detail with both schemes
and have found both to be equally good.

3.2. The parameterization approach

The parameterization approach, initiated by Wehage and Haug [26], has
been popularly used for solving CMS. To describe the approach let us begin
with an ideal situation. Suppose a global parameterization of .# is available.
Then a numerical solution of (2.2) and a simultaneous enforcement of (2.1)
is easy. Let : R"™™ — # be a known diffeomorphism (global parameteriza-
tion) and ¥ (3) = xo. Take any y € R"™ and let x = (y). Then y (y), the
n x (n — m) Jacobian of y evaluated at y, defines an isomorphism from R"™™
to T, #. Let I'(;y): T..# — R*™ denote the inverse of this isomorphism. Pro-
cedure-wise, given v, w = I'(v;y) can be obtained by solving any one set of
(n — m) linearly independent equations chosen from the system ¢ (v)w = v.
Then x(-) is obtained by solving the ODE, y=T (f W),
t € [to,ty], ¥(to) = yo, and setting x(¢) = Y (¥(t)), t € [to,27] and x(¢) € A is as-
sured for all ¢.
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In most applications where (2.1), (2.2) is encountered, either a global param-
eterization does not exist, or, it exists but it is unknown. In that case, a reason-
able approach is to resort to a numerically computed local parameterization of
A4 around xy. Since it is important for implementation purposes, let us go
through the details.

Let T = [Uy|V] be an (n x n) orthogonal matrix such that Uy € R™ "™,
Vo € R™™ and P(xo) = [g(x0)|Uo]' is nonsingular. Later we will describe two
specific choices for Uy and ¥, which lead to two different parameterization ap-
proaches. If g, is a continuous function of x then there exists X, a neighbor-
hood of x, such that

&)y . :
Px) = Ut is nonsingular Vx € X.
0

Since rank(P(x)Vy)=m and Ujly =0, we have g.(x)Vpisan mxm
nonsingular mairix Vx € X. Now consider the transformation of variables,
(y,z)! == T'(x — xo). The inverse transformation is x = x; + Upy + Voz.

In terms of the new variables (2.1) can be expressed as
0= 3(y,2) £ g(xo + Upy + Voz). Let .4 = {(y,2): 8(y,z) = 0}. Now

£.(v.z) = g(xo + Uoy + Voz) Vs. (3.7)

It is clear that g,(0,0) = g.(x0)¥ is an m x m nonsingular matrix. By the im-
plicit function theorem, y provides a local parameterization of .#. In other
words, there exists a nelghborhood Y around the origin in R"™", a neighbor-
hood X around the origin in R" and a dlﬂ"eomorphlsm Y Y — X such that:
(i) ¥(0) = 0; and (i) (y,2) € MNX = (y,2) =¥().

Since (y,z) and x are related by the invertible affine transformation, y also pro-
vides a local parameterization of .#. The diffcomorphism, i : ¥ — X defined by
X = xo+ TX and Y(y) = xo + T¥(y), is a local parameterization of .# at xo. Pro-
cedure-wise, the computation of x = i(y) given y € Y is done in two steps: (a)
solve g(y,z) = 0 for z such that (y,z) € X; and (b) set x = x; + Upy + Vpz. These
steps are equivalent to solving the following nonlinear system for x € X:

g(x) =0, Uj(x —x0) —y=0. (3.8)
It is now easy to set up an ODE for y in Y:
= Ui = Uy f(x) = Uy f(WO0)) = ). (39)
Once (3.9) is solved with y(to) =0, we can find x(-) from
x() =y (). (3.10)

After setting the ODE in y we now turn our attention on integrating it nu-
merically. Integration of the ODE (3.9), involves the evaluation of the right-
hand side function f(p). It is worthwhile to study the computation of 1.
The following procedure computes f(y) for given .
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Procedure TP. Computing f(y) given y.
Step 1: Solve g(y,z) = 0 for z;
Step 2: Set x = Y(y) = xo + Uyy + Voz (diffeomorphism);
Step 3: Compute f(x) and set f(y) = ULf (x).

Two important observations have to be made here. First, (3.10) does not
have to be carried out as a separate operation; rather, it comes as a by-product
when f(y) is evaluated. Second, each evaluation of f(y) is somewhat expensive
because, apart from one evaluation of f(x) it requires the solution of the non-
linear system, g(y,z) = 0 for the m-dimensional vector, z. Due to this reason,
integration methods which utilize fewer derivative function evaluations should
be used to solve (3.9). In particular, when dealing with nonstiff systems, Adams
methods which require only about 2 f evaluations per integration step should
be preferred over Runge-Kutta methods.

The merits of the Parameterization approach are that, it fundamentally in-
cludes and enforces (2.1), it involves the integration of only the (n — m) dimen-
sional ODE system, (3.9), and, it involves the evaluation of f(x) only at points,
x € . Next we mention its defects in the following three remarks.

Remark 3.1. As already mentioned, each evaluation of f(y) is expensive
because it requires the solution of the nonlinear system, g(y,z) = 0. Since the
evaluation of &,(y,z) and its factorization are usually expensive, this system
should be solved using the MNR method. For this method to work well, a
good starting iterate for z must be provided. Later, when we discuss specific
parameterization approaches, we will see how this is done.

Remark 3.2. To avoid the resetting of the ODE in (3.9), the parameterization
done at xo is continued for as many integration steps as possible. But a change
in parameterization becomes a necessity when x crosses out of the range of
parameterization, X as integration progresses. This usually occurs when the
nonsingularity condition is violated. If a single step integration method, such as
a Runge-Kutta method, is used to solve (3.9), the change in parameterization
is not a serious issue. It i1s, however, an important factor when a multistep
method such as an Adams method is used. A multistep method derives its
efficiency by changing the orders of integration formulas. Large integration
steps are usually taken at high orders. Suppose a change in parameterization
becomes necessary while the method is operating with a high order integration
formula, since the ODE in (3.9) has to be altered, integration has to be
restarted from a first order formula, leading to a severe loss of efficiency.

Remark 3.3. Interpolation on x, required for purposes such as graphical output
and root finding, is somewhat expensive when the Parameterization approach
is used. This is because integration methods only yield an interpolant for y and,
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obtaining x for a given y requires the execution of Steps 1 and 2 of Procedure
TP.

How should U, and ¥, be chosen? It will be ideal to choose them in such a
way that (3.9) is, in some sense, nicely formed so that its numerical integration
can be done more efficiently than that of (2.2). But, with all popular integration
methods, e.g., Runge-Kutta and linear multistep methods, integration is unaf-
fected by an affine transformation of the variables. In other words, suppose
x = I'% + s is a transformation where 7 is nonsingular. Then, given x = f(x),
carrying out numerical integration on x, and, carrying out the same on
X=T""f(Tx+s) and then setting x = 7% + s, will yield identical solutions;
of course, we are assuming that 7 is appropriately included in the error mea-
surement of X. From the definition of x(¢), integration efficiency is unaffected
whatever be the choice of U, and V. Therefore, the choice should be based
on other factors such as improving the efficiency of transition when a change
in parameterization is needed, and, making X, the region of parameterization
as large as possible.

Two specific choices, termed ‘Coordinate Partitioning’ (CP) and ‘Tangential
Parameterization’ (TP), have been popular. In the CP approach, due to Weh-
age and Haug [26], T = [Uy|¥] is chosen to be a permutation of the identity
matrix. In other words, (y,z) is nothing but a reordering of (x — x,) such that
g. is nonsingular at xy. This reordering can be decided by doing an LU factor-
ization of g,(xy) using column pivoting. In CP, an extrapolator is maintained
on z. This extrapolator is a polynomial of the same degree as that of the inter-
polant for y used in integrating (3.9). The extrapolator on z is used for two pur-
poses: (1) it provides a good starting iterate for z when g(y,z) = 0 is solved by
the MNR method; and (2) when a multistep integration method is used and the
change in parameterization mentioned in Remark 3.2 becomes necessary, the
extrapolator on z can be used together with the interpolant on y to start the
integration of the new ODE system at the same order as that used in the last
integration step of the old ODE system. The use of the extrapolator for the sec-
ond purpose certainly improves efficiency. However, from a stringent accuracy
point of view, the use of the extrapolator for restarting integration should be
objected to, because the extrapolator was not based on error control.

The idea of TP was introduced by Mani et al. [27]. Here ¥; is chosen so that
its column space is the same as that of g'(x,). In other words, the columns of U
form an orthogonal basis for 7,,.#. U and ¥; can be computed by doing a full
QR decomposition of g'(xo). There are two motivating reasons for the above
choice of U, and V. First, given only the first-order data of g at x,, one expects
that X, the region of validity of the local parameterization corresponding to the
above choice of U, and ¥, is “bigger” than that of any other choice. This means
that this approach will require fewer changes in parameterization. Second,
suppose integration of (3.9) is being advanced from y; to y..; in a time step.
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Whenever g(y,z) = 0 has to be solved for z during this time step, z = z; pro-
vides an excellent starting iterate for the MNR method.

For TP, Mani et al. [27] use an interesting idea to decide when a change in
parameterization is needed. Roughly, their idea is as follows. At xy, it should be
clear that ||y||, = ||*]|, and ||Z||, = 0. The ratio, ||y|,/||%||, gives a good indica-
tion of a need for change in parameterization. Choosing an appropriate
ue(0,1), say u=0.5 a change in parameterization is called for when
I¥ll/11%]l < p occurs.

Let us look at some factors of comparison between CP and TP. Usually
changes in parameterization are less frequent when TP is used. This is to be ex-
pected. However, when a multistep method is employed for integration the in-
efficiency caused by a change in parameterization is very severe for TP because
it has to restart integration from a first-order formula; recall Remark 3.2. One
heuristic for restarting is to use the (x,x) values of the past integration grid
points to generate the (y,y) values corresponding to the new parameterization
at these points, and build an interpolant of appropriate order for (y,y) to re-
start integration efficiently. Even this modification involves a lot of overhead.
Thus, if integration involves a small motion that does not require a change in
parameterization, TP is more efficient. On the other hand, if there is a large mo-
tion that requires several changes in parameterization even for TP then CP will
perform better. The popular code, DADS [28] which solves CMS, uses a mod-
ification of CP [29].

Integration error control: An important issue concerning error control has
not been carefully addressed in the literature. To explain and address the issue
we need to discuss how local error control is done in one integration step. At
t =1 let: 3, denote the approximate y given by numerical integration; and
xx = ¥(»). When stepping from ¢, to some #.| = # + h; using local error con-
trol, y; and x; are assumed to be exact. Let y(-) and x(-) denote the true local
solution, i.e., solutions of (3.9) and (3.10) with y(#) = y. Integration formulas
are used to obtain y,,; and x;.,, which are approximations of y(#.,,) and
x(t41), respectively. Define the error vectors as: e, =xxi1 — x(f+1) and
e, = Y1 — ¥(tisr). A scalar measure of error is usually specified by the user
of the integration code as an appropriate norm on e,. Popular codes using sin-
gle step integration methods employ a scaled /,,-norm while most codes based
on multistep methods use a scaled /,-norm. Let us take the latter as an exam-
ple. The aim, then, is to choose the step size &; large enough so that

lexlly = lxert = x(te)lly = W Oiet) = POt )liw <7, (3.11)

where 1 is a specified tolerance and W is usually a diagonal matrix that specifies
variable weights for the components of x and ||x||* = x!Wx. The difficulty is that
(3.11) is not a direct norm specification on e, because ¥ is a nonlinear function
of y. Fortunately, a reasonable approximation helps us to overcome the
problem.
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The first-order Taylor series approximation of ¢ around .., gives

YO (ten)) = ¥ 0in) = ¥, 0rn) 0 (t41) — ). (3.12)

This is certainly a good approximation because y(#.) and y,;; are near to each
other. Using this in (3.11) we get a reasonable approximation for |le||, as

llexll = lleyll- (3.13)
where W = '//;(yk+l)W¢y(yk+l)~

Remark 3.4. One may object to the use of ¥, (yx+1) because, when 4 is being
decided y;.; is unknown. In most codes, however, A; is chosen based on
information from previous integration steps and then, a check is made whether
the error is within the tolerance. If the error is within the tolerance, this /4 is
accepted; else, it is reduced. In such a mode of operation the use of ¥, (yx+1) is
acceptable. In some codes, such as those based on Taylor series methods, the
choice of 4 is based on estimating ||e||,. In such cases, the best remedy is to
assume that ¥, will remain fairly unchanged in the integration step and use
¥, (%) instead of wy(yk+1) in (3.13).

How do we compute ¥,(3x+1)? Since x = y(y) is the solution of (3.8), it is
easy to differentiate that system with respect to y and obtain

U, () = [g"(;]';“)]ﬁl (1,.?,,,)' (3.14)

This is not an efficient way of computing ¥ (yi11). A more useful formula,
which can be verified using (3.14) is

Uy 0ne) = [ = Voleules) ) ' xk) | Uh. (3.15)

Pre-multiplying (3.15) by g.(xx4+1) will give ge(xi11)¥,(y+1) = 0 and pre-multi-
plying it by Uj will give Ugr,(3%+1) = L-m- A good approximation of the in-
verse (in the sense of LU decomposition) required in the above formula is
available from prior computations. To see this, note that g(y;.1,z) = O1is solved
for z;,; by the MNR method, so as to obtain x,,;. This requires the inverse of
&(m.1,z) where Z is the starting iterate for the MNR iterations. By (3.7) and the
fact that z and z,,, are near to each other, the inverse of g,(yi41,Z) is a good
approximation of the inverse of g.(x.1) V.

3.3. The constraint stabilization approach

The basic idea of this approach is to replace the solution of (2.1), (2.2) by the
output-stabilization of an associated nonlinear dynamic system with control,
u € R™ and output, y € R™:

x = fx) + P(x)u, (3.16)
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y=g(x), (3.17)
where P: R" — R is a matrix function that satisfies the following assumption.

Assumption 3.1. 3 an open set ¢ in R” containing .# such that g,(x)P(x) is
nonsingular Vx € 0.

The aim is to use u to regulate the output y in a neighborhood of .#. On .#,
exact regulation, i.e., y(-) = 0 (0 denotes the identically zero function) is possi-
ble. The following simple theorem, which is only a slight generalization of a re-
sult, due to Gear [30], establishes that if u is chosen to accomplish exact
regulation on .# then (3.16) and (2.2) are identical.

Theorem 3.1. Let xq € .#. Given u(-), let y(-) denote the solution for y obtained
by solving (3.16),(3.17) with x(ty) =xo. Then y(-) =0 iff u(-) =0. In other
words, if xo € . and the u(-) is chosen in (3.16) to do exact regulation, i.e., force
(2.1), then the solutions of (3.16) and (2.2) starting from x(f) = xy are
identical.

Proof. The if part is trivial because (2.2) is a vector field on .#. The only if part
is also easy. Since y(-) =0, 0 = y = g, (x)x = g.(x)f(x) + g(x)P(x)u. Since

&@X)f(x)=0 Vxe ., (3.18)
and g,(x)P(x) is non-singular, ¥ = 0. [

There are two very different ways of using (3.16) and (3.17) for numerically
solving (2.1) and (2.2). These are due to Baumgarte and Gear.

3.3.1. Inexact constraint stabilization approach
In Baumgarte’s approach [31],

P(x) = g,(x) (3.19)
is chosen and a feedback law, u = K(x) is designed so that y is exponentially

regulated. For example, we can choose a positive-definite diagonal matrix, D
and require that y satisfies

y+Dy=0. (3.20)

Using (3.16)—(3.19) it is easy to verify that the unique choice of u that leads to
(3.20) is

u=K(x) = —[g.(x)g(x)] "' Dg(x). (3.21)
Putting this in (3.16) gives

= f(x) +gKEx) 2 F(x). (3.22)
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Since K(x) =0 Vx € .#, (3.22) is an extension of (2.2). For x¢& /. #, f (x)
roughly corresponds to a modification of f(x) so that the derivative vector
points towards ..

Baumgarte’s approach consists of setting up (3.22) and then applying a nu-
merical ODE solver on it. This approach is the simplest of all approaches avail-
able for solving (2.1), (2.2). However there are three issues that limit its
usefulness. First, the structure of the solution trajectories of (3.22) is not clear.
This has to be understood if proper error control is to be done.

The second issue concerns the choice of stabilization parameter D. If D is
chosen to have large numbers so as to stabilize y fast, then (3.22) may become
a stiff system even if (2.2) is nonstiff. Thus, a lot of care is needed in choosing D.
Baumgarte [34] suggests that the choice of D should be done adaptively. But a
clear, general way of choosing D is not so far available at all.

The third issue is regarding efficiency. By (3.21), each evaluation of f {x)
requires the evaluation of g.(x) and the solution of the linear system,
[g:(x)g!(x)]u = —Dg(x). The best way to solve this system is via a skinny
QR decomposition of g;(x). These matrix operations are roughly the same
as those done by the PA in the correction-to-manifold phase (Step 2 of Pro-
cedure PA). Thus, simplicity of Baumgarte’s approach should not be misun-
derstood to mean efficiency. In fact, there is a good possibility that the PA is
more efficient than Baumgarte’s approach that uses (3.22). To improve effi-
ciency, we could replace (3.21) by u = —Dg(x). This does lead to the stable
system, y + g.(x)g'(x)Dy = 0; however, in this case it is difficult to choose D
so that y has a prescribed exponential rate of decay. For CMS, a special set-
up allows Baumgarte’s approach to be very efficient; in fact, Baumgarte’s
initial motivation comes from these systems. An extension of this approach
to the slightly more general case of index-3 in Hessenberg form is discussed
in [32].

3.3.2. Exact constraint stabilization approach

Gear’s approach [30,33] can be viewed as a complicated discretization of
(3.16), (3.17) using an integration formula where u is chosen to do a deadbeat
control of y wherever it is required. The aim is to involve (2.1) directly in the
numerical solution of (2.2). As mentioned earlier the direct numerical solution
that simultaneously takes care of both (2.1) and (2.2) is not easy because they
form an over-determined differential-algebraic system, though they are consis-
tent. The introduction of # and the replacement of (2.2) by (3.16) provide the
additional variables necessary to make the system fully determined. By Theo-
rem 3.1 the system (3.16), (2.1) is well defined and, on .# it is identical with the
original system (2.2). However, numerical solutions of the two systems are dif-
ferent. A numerical solution of (3.16) and (2.1) ensures (2.1) at the cost of vi-
olating the invariant,
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u=0

i.e., altering (2.2). On the other hand, a numerical solution of (2.2) does not
guarantee (2.1). Gear’s approach consists of solving the index-2 differential-al-
gebraic equation system defined by (3.16) and (2.1) with P(x) = g'(x) and this
system is called stabilized index two problem. The following procedure de-
scribes the basic steps involved in an integration step from time ¢, to t,,;.

We will now discuss the implementation details of ECS. Before going into
details, let us first briefly discuss about backward difference formula (BDF)
method mentioned in the algorithm. The formula used is the fixed leading form
of the kth order BDF method. Stability of BDF methods applied to index-2
DAE:s is discussed in [34}]. Block BDF methods for DAEs are discussed in [35].

The values of the predictor x£_,,%7 | and the corrector x,,; at ,.; are de-
fined in terms of polynomials which interpolate the solution at previous time
points. Following the ideas of Krogh [36] and Shampine and Gordon [37] these
polynomials are represented in terms of modified divided difference. The cor-
rector formula can be written as [3§]

Xni1 =5¢:+1 - (has )(x""'l _xi+1)’

n+1

where the fixed leading coefficient o, is defined as o, = — ZL] (Jl)
Procedure ECS. Stabilized index two formulation.

Step 1: Predict x at time ¢,,, from the previous values and obtain x/, ,.

Step 2: Evaluate f(x}, ) and g.(x_ ).

Step 3: Using an appropriate BDF for x, solve for u,,; by MNR iteration
from (2.1).

Step 4: Repeat steps 2 to 3 once, using the latest computed values of x,,; for
This amounts to a single corrector iteration.

The specialization of this basic idea to CMS equations will be discussed in
the forthcoming paper [39].

3.4. The perturbation approach

In the context of maintaining conservation laws of ODEs, Shampine [20]
suggested that the solution be perturbed after each integration step so as to sat-
isfy the conservation laws. This is essentially a new way of solving vector fields,
and we have called it as the Perturbation approach. In this section we give a
much more detailed analysis of the PA than that given by Shampine. The
new approach overcomes some of the difficulties associated with the other
two approaches. Its salient features are: (1) it decouples the process of integra-
tion from the process of correction to the constraint manifold; (2) it solves
the vector field in terms of the original coordinates and hence the integration
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tolerances for the original variables can be specified directly; and (3) it does not
involve any coordinate transformation which has to be carried out in some of
the other approaches.

In the PA, a correction is applied to a numerical solution of (2.2) after each
integration step so as to satisfy (2.1). To describe the approach, it is sufficient to
say what is done in one integration step. Suppose & steps of the numerical solu-
tion of (2.1), (2.2) have been done and ¢ = #, has been reached. Let x; € .# be the
solution approximant at ¢ = #. Denote the local solution by x(-), i.e., x(-) is the
solution of (2.2) with x(#) = x,. Let 7 denote the integration tolerance. In the
(k + 1)st step, the aim is to determine a step size A, and an x;., € .# that satisfy

[x (i) = xer]| <7, (3.23)

where .| = 4 + k. The determination of 4; and x;,, is described by the fol-
lowing procedure.
Procedure PA. Determination of 4; and x;., by the PA.

1. Numerically integrate (2.2) from x(#,) = x; using local error control (with-
out taking into account (2.1)) to obtain a step size 4; and an approximant, X
that satisfy

||x([k+]) —Xk+]|| <1/2 (324)

2. Solve the optimization problem
min ||x — %] st gx)=0 (3.25)

and set x;,, = the minimizer of (3.25).

The following theorem establishes the correctness of the procedure.

Theorem 3.2. The xi,1 determined by Procedure PA satisfies x;+1 € M and
(3.23).

Proof. Since x;, is feasible for (3.25), it satisfies x;.; € .#. Consider x(t;1).
the true local solution of (2.2) at #4;. Since x(¢) € .# V¢, x(4+1) is feasible for
(3.25). By optimality, ||x+1 — Xi+1]] < ||x(8+1) — Xx41]|. Using this together with
(3.24) and the triangle inequality we get

e = x| < IXker = T | + |3 (8s1) — X |

éznx(tkﬂ) _ik+l|| <1, O
Step 1 of Procedure PA can be carried out using any well-known numerical
method for solving ODEs. Step 2 requires a subprocedure that solves (3.25).
Before going in to the details of this subprocedure, let us make some useful re-
marks on the procedure and the approach.

(3.26)

Remark 3.5. Step 2 of Procedure PA is stronger than what is really needed. It is
sufficient if x;.; satisfies



R. Sudarsan, S.S. Keerthi | Appl. Math. Comput. 92 (1998) 153-193 171

T
gxii1) =0, xepy — X}l < 7 (3.27)

By the first inequality of (3.26) and (3.24), it follows that x;,; also satisfies
(3.23). Though the feasibility problem (3.27) is usually as difficult to solve as
the optimization problem (3.25), it is useful because its solution is simpler to
verify.

Remark 3.6. With all the popular integration methods, something more than an
¥+ satisfying (3.24) is available: an interpolant, ¥: [t, 1] — R" that satisfies
*(te) = Xk, X(tge1) = Xus1, and, ||%() — x(¢)|| < 1/2 V¢ € [t, k1] For each ¢,
define %(r) to be the solution of

min ||x ~ x(6)|| s.t. g(x) =0. (3.28)
Then, using the same ideas of the proof of Theorem 3.2, it is easy to establish
x(t) e A, 1X¥(8) — x(O)|| < T VI € [tr, trya]- (3.29)

Thus X is a natural interpolant associated with PA. The evaluation of this in-
terpolant is somewhat expensive since it requires the solution of (3.28) at each ¢.

Remark 3.7. In Step 1 integration is done using half the tolerance specified
for the solution accuracy. This means that PA is inefficient when compared
with the direct approach of simply integrating (2.2). This is a cost one has to
pay for ensuring (2.1). It should be mentioned that halving the tolerance
does not double the integration cost. This is because, all the popular
integration methods use a formula of the form ah”*! = tolerance, to
determine the step size, where p is the order of integration formula used. If
Pave denotes the average order of formula used for integration, then we can
roughly say that

Number of integration steps for tolerance =1/2
Number of integration steps for tolerance =1

r2 @),

Even if we take p,,. = 4, which is a reasonable value for good codes such as
those in [4], » = 1.149. Thus, halving the tolerance increases the number of in-
tegration steps needed to do an integration task only by about 15%.

Now let us look at the possibility of replacing the integration tolerance, /2
used in Step 1 by something bigger while ensuring that x| € .# and (3.23)
hold. There is something special when: the norm used in integration is a scaled
L-norm, i.e., ||x|| = vx'Wx, where W is a symmetric positive definite matrix;
and g is affine in the t neighborhood of %, i.e.,

gx)=Ax+b Vx3|x—Xu| <. (3.30)

Since xi1 solves (3.25), (¥ —xeet) W(E1 —Xee1) =0 Yy € M 3|y — Tt
< 1. Thus
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Xt — x(tk+1)”2 = || (X1 — Xus1) — ((tet1) —xk+x)”2
= || (R4 _xk+l)||2 + |11 —xk-H)”Z (3.31)
and hence,
[e(tesr) = x|l < Xk = x(te)|l, (3.32)

which means that x;., is more accurate than x,.;. In such a situation, then, it is
permissible to replace the tolerance /2 in (3.24) by 7.

The scenario is different when g is nonlinear. This nonlinearity of g can
cause distortions which may not permit one to obtain nice bounds such as
(3.32). However, we can say that, at stringent tolerances (3.30) is very nearly
correct with 4 = g,(%141), b = g(Xis1) — & (Xe+1)%141, and so the probability
of (3.32) occurring is very high.

Remark 3.8. Shampine [20] cautions the use of a variable order multistep
integration method, such as Adams method, in Step 1 of Procedure PA. His
main objection is that, the perturbations of Step 2 may cause some ‘roughness’
in the interpolant of the multistep method, which in turn may affect the order
changing mechanism. But, since the perturbations are structured (i.e., they are
associated in a special way with the fundamental constraint (2.1), of the true
solution), it is our belief that Shampine’s caution is not serious. In a number of
numerical tests carried out on several vector field examples arising from CMS,
we have found that the order changing process associated with the solution
obtained by the PA is not much different from that associated with the direct
solution of (2.2). The Adams code of Shampine and Gordon [37] was used in
these numerical tests. Specifically, we observed that the two order changing
mechanisms are identical at low orders and, only slightly different at high
orders. Furthermore, in spite of the small differences in the orders, the step
sizes associated with the two solutions were nearly identical.

Let us now consider the solution of (3.25) required in Step 2 of Procedure
PA. Usually, scaled /,- and /..-norms are the popular norms used for measur-
ing integration errors. Shampine suggests a method for solving (3.25) when the
scaled /,-norm is used. Further, he makes the remark that, “if the ODE solver
is based on the maximum norm /,, one might well prefer to alter it to use the
Euclidean norm /, so as to arrive at a linear algebra problem which has a clas-
sical solution”. For the scaled /,-norm we suggest a method which is slightly
different but more efficient than Shampine’s method. Furthermore, we also
suggest a method for the scaled /. -norm and argue that, in some ways the
computation of an /.-norm solution is cheaper than that of the /;-norm
solution.

Consider the scaled /;-norm first. Here ||x|| = v/x!W#x, where W is a symmet-
ric positive definite matrix. Typically, W is a diagonal matrix, the diagonal
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elements representing the variable weights applied to the different components
of x. To simplify the notations, let us assume the objective function in (3.25) is
replaced by half its square, and an appropriate coordinate transformation,

X=%n +TIX (3.33)
(T = a nonsingular matrix such that 7'"WT = I,) is done, so that (3.25) becomes

min ||X]3/2 st G(X) =0, (3.34)
where

G(X) = g(Fes1 + TX). (3.35)
The first-order necessary conditions for (3.34) are

X-GX)u=0, GX)=0. (3.36)

where yu is the Lagrangian multiplier for equality constraint. We can use the
MNR method to obtain X*, a solution of (3.36).

Following Remark 3.5, finding an optimal solution of (3.34) is not crucial.
This allows us to incorporate the following efficiency-improving modification:
replace the term G (X) in (3.36) by G(0). Thus we solve

X -G,(0p=0, GX)=0, (3.37)
instead of (3.36), using the MNR method to obtain a solution X*.

Remark 3.9. Clearly, the X* found above may not solve (3.34). If || X*|| <t/2,
then we accept it and set x4+ = %441 + X for use in Step 2 of Procedure PA.
This is because such an x;.; satisfies (3.27), and, Remark 3.5 says this is
sufficient for the success of Procedure PA. If |LX*|| > 1/2 then there are two
alternatives. Either a more detailed method is used to solve (3.34), or, Step 1 of
Procedure PA is repeated with a smaller integration step size and then Step 2 is
solved via (3.36). We feel the latter to be better because, the failure of the first-
order approach indicates a rapid change in g and so it is good to do a careful
solution with a smaller integration step size. OQur experience with numerical
problems is that, cases where || X*|| > 7/2 occurs are extremely rare.

The appropriate starting iterate for the MNR method applied to (3.37) is
X% =0, 1®=0. Let (x', ') denote the /th iterate. It is easy to verify, using the
structure of the system in (3.37), that the (/ + 1)th MNR iteration consists of:

(i) solving

Gx(0)G4(0)8, = ~G(X") (3.38)

for 6,; and
(ii) setting

W= 6, XM = GO, (339)
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Remark 3.10. It can be assumed that rank(Gx(0)) = m. This is reasonable
because of Assumption 3.1 mentioned in Section 3.1 and the fact that Xz, is
close to .#. (Note that Gy (0) = g,(%k+1)7.)

An efficient, as well as accurate, way of solving (3.38) is by computing a
skinny QR decomposition of G (0), i.e., G%(0) = O\R;, where O € R"™*" has
orthonormal columns and R, € R™" is upper triangular [22]. Normally the
QR decomposition of any matrix B(,..) (n = m) is given by B = OR, with
R = (R;,0)". Q is an unitary matrix and R, is an upper triangular matrix.
To avoid unnecessary computation, “skinny” QR decomposition is used
[22], p. 217. The skinny QR decomposition of 4' = Gx(0)' = Q|R, is unique,
where Q; € R”™ has orthonormal columns and R; is upper triangular with
positive diagonal entries. To compute the above skinny QR decomposition,
a modified Gram-Schmidt (MGS) orthogonalization process is used ([22],
p. 219). This algorithm requires 2am? flops. The MGS computation is arranged
so that A is overwritten by () and the matrix R, is stored in a separate array.
Then (3.38) can be solved by replacing Gx(0)G}(0) by R|R, and solving the re-
sulting twin triangular systems.

Shampine [20] suggests a method that is equivalent to the Newton—Raphson
method applied to (3.37). The first iterations of his method and our method are
equivalent. Each additional iteration of his method requires the evaluation of a
Jacobian of G and the computation of a partial QR decomposition of its trans-
pose; whereas, our method does not require these computations.

Now consider the scaled /.-norm. Here the norm used in (3.25) is defined by
llxll = ||W]|., where W is nonsingular. Usually W is diagonal. Define T = W~
and consider the transformation (3.33). Let G be as given in (3.35). Then (3.25)
becomes

min ||X]|, st GX)=0. (3.40)
The linearization of (3.40) around X =0 is
min ||X||, st AX =5, (3.41)

where A = Gx(0) and b = —G(0). By Remark 3.10, it is reasonable to assume
that rank(4) = m. The following lemma is useful for solving (3.41) and (3.40).
It is the dual of ‘Fundamental Theorem 2’ of Cadzow [40].

Lemma 3.3. There exists a solution, X of (3.41) with the property that at least
(n — m + 1) components of X are equal in absolute value and the columns of A
corresponding to the remaining components are linearly independent.

Proof. Problem (3.41) is equivalent to the LP problem,

minw st AX=b w=2X, w= —X, i=1,...,n (3.42)
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The solution is attained by an extreme point of the feasible set and, the prop-
erty mentioned in the lemma is nothing but the characterization of such a
point. []

Cadzow [40] gives an efficient algorithm for finding a solution of (3.41) with
the property mentioned in Lemma 3.3. Basically, the algorithm is a careful spe-
cialization of the simplex method to (3.42). Initially, the algorithm chooses
(m — 1) linearly independent columns of 4, sets signs for the components of
X corresponding to the remaining columns, assigns all these components to
be equal in absolute value to a quantity w, and then solves the square system
of equations resulting from AX = b to obtain X. Then a simple test checks the
optimality of X. If X is not optimal, an appropriate change is made to the
choice of (m — 1) columns of 4 so that a descent in the cost is assured. These
steps, which represent one iteration of the algorithm, are repeated until a solu-
tion is found. In the worst case, the number of iterations needed for conver-
gence is exponential in m. Typically, however, convergence takes place in less
than » iterations.

Now consider the solution of (3.40) for use in Procedure PA. Remark 3.9
extends to the scaled /.-norm. By Remark 3.5 it is sufficient to find an X* sat-
isfying

GX)=0 |IX|.<1/2. (3.43)

Verifying whether X* satisfies (3.43) is much easier than checking if X* solves
(3.40). Following is a procedure for solving (3.43). Typically, the X* returned
by it also solves (3.40).

Procedure PC. Finding an X that satisfies (3.43).

1. Solve (3.41) by Cadzow’s algorithm. Let X; be the solution found. Generical-
ly, (n — m + 1) components of X, with index list /, are equal in absolute val-
ue, say wy, and the absolute values of the remaining components are strictly
less than wp. Let us assume this to be the case.

2. If G(X) =0 (in a numerical implementation this is checked using a toler-
ance), set X = X; and go to Step 3. If not, do the following. Choose a vari-
able w and set: X' = sign(X))w Vi € I. Let z € R" denote the vector of
variables containing {X: i ¢ I} U {w}. Then solve the square nonlinear sys-
tem in z resulting from G(X) = 0, by the MNR method to obtain a solution,
z. Let X denote the corresponding solution in the X space.

3. If ||X]| < 7/2, stop with X* = X. Else, indicate failure and stop. (As men-
tioned in Remark 3.9, a good remedy for the failure is to go back to Step
1 of Procedure PA and decrease the integration step size.)

An important implementation detail is worth mentioning here. In each of its
iterations Cadzow’s algorithm maintains and updates the inverse of an m x m
matrix, 4 which has the structure that the first (m — 1) of its columns are



176 R. Sudarsan, S.S. Keerthi | Appl. Math. Comput. 92 (1998) 153193

columns of 4 and the last column is formed by adding/subtracting the remain-
ing columns of 4. The inverse of 4 available at the termination of Cadzow’s
algorithm, i.e., Step 1 of Procedure PC, serves as an excellent approximation
of the inverse required by the MNR method in Step 2.

Following are two good reasons which suggest that the scaled /.-norm
correction is cheaper than the scaled /,-norm correction: (i) the former can
be implemented using the LU factorization of an m x m matrix, whereas
the latter requires the more expensive partial QR decomposition of an
n x m matrix; and (ii) the index list / at the end of a call to Procedure PC
serves well as the index list needed for initializing Cadzow’s algorithm during
the next call to Procedure PC, i.e., the next integration step. Even with a ran-
dom choice for the index list 7, Cadzow [40] has observed that solving (3.41)
using his algorithm is usually cheaper than doing an iteration of the form
(3.38), (3.39).

4. Comparison

In this section we compare the various approaches. The comparison is done
both, by doing a crude cost analysis and by studying the performance on a set
of numerical examples. Since the choice of an integration method is as impor-
tant as the choice of the approach itself we first give a quick review of some
well-established integration methods for solving ODEs.

4.1. Numerical solution of ODEs

There are various integration methods available for solving the ODE of the
form (2.2). In many applications we come across two type of ODEs: (i) Stiff;
and, (ii) Nonstiff based on the qualitative behavior of the ODE. If (2.2) is stiff
an implicit multistep method [25] due to Gear is the best choice. If (2.2) is non-
stiff an explicit method is appropriate. In particular, there are two popular
methods: Runge-Kutta method and Adams. Several fine codes based on these
above methods are available in DEPAC (Sandia), ODEPACK (Lawrence Liv-
ermore), NAG and IMSL libraries. Both methods produce approximants x,
and f,, respectively to x(#,) and x(z,). At the nth time step, x,,, and f,,, are
generated by using the known approximants at previous mesh points. The
step-size, h,.| = t,.1 — ¢, is chosen as long as possible while still meeting an er-
ror criterion on the solution specified by the user.

Adams methods are multistep methods that make use of information at pre-
vious time points to obtain x,,;. Of the Adams methods, Adams-Bashforth—
Moulton Predictor Corrector (PECE) formulas is the most popularly used.
Suppose we have approximation x,; to the solution x(#,_;) for
i=0,1,...,%, where & is the order of the method used (up to 12 in most codes).
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We would like to find an approximation to the solution at ¢, ;. First, an initial
guess for the solution at ¢,,, is formed by evaluating the predictor polynomial
and the derivative at t,,; by evaluating the derivative function f. The approx-
imation x,,, to the solution at ¢,,; which is finally accepted is the solution of
the corrector formula. While each step costs only two f-evaluations, the over-
head in each step (the tasks of forming the predictor polynomial, selecting and
changing the order and step size etc.) is high. Because of these features, Adams
methods are attractive for problems requiring high accuracy and having expen-
sive f~evaluation. In the case of CMS each f-evaluation involves the solution of
the linear system.

RK methods are single step methods which generate from x,, f(x,) and sev-
eral more f~evaluation in the interval [t,, #,11]. RK methods of a fixed low order
are efficient for problems needing a moderate accuracy and having cheap
Jf-evaluation and RK method of 4th order is the most popular in this respect.
Among various RK methods, one due to Fehlberg has enjoyed popularity.
The method is based on a pair of formulas of orders four and five. In partic-
ular, the code RKF45 (renamed as DERKF and available in DEPAC) written
by Shampine and Watts has been widely used. However, the development of a
new pair of four—five formulas by Dormand and Prince [41] and its subsequent
analysis and modifications by Shampine [42] have led to the new pair, DPS.
The DPS pair is cleverly structured and the parameters in its formulas are sys-
tematically chosen to minimize the truncation errors. Shampine [42] has shown
DPS is much better than the Fehlberg pair by all the key performance stan-
dards. Therefore DPS is bound to replace the Fehlberg pair in future RK
codes. The code RKDPS written by Sudarsan and Keerthi [43} is available
and has been tested and passed all the verifications. We have modified this code
for CMS. The preliminary investigations have shown some promising results
and a detailed study is needed (authors have not done a detailed study of
RK methods for DAESs). Hairer et al. [7] studied extensively the application
of RK methods to DAEs. In Ref. [44] convergence of RK methods for DAEs
of index-3 is discussed.

Another important thing to consider in this context is interpolation. Inter-
polant is used to approximate the solution and its derivative between mesh
points. This facility can be used for handling event functions and also for
graphical outputs. The polynomial produced for the popular Fehlberg(4,5)
Runge-Kutta formulas by Horn [45] and that in the Adams code of Shampine
and Gordon [37] do not connect at the mesh points to form a globally contin-
uous function. Those of the BDF and Adams code of Gear [46] form a contin-
uous function, but the first derivative has jump discontinuities. The jumps seen
in these codes are comparable in size to the local error tolerances. To remedy
this difficulty, a number of authors have provided algorithms with C' piecewise
polynomial approximations for Runge-Kutta [41,42], Adams [47], and BDF
[48] codes.
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4.2. Cost analysis

We now carry out a simple cost (of computation) analysis that reveals which
choice of approach-integration method combination is the most efficient for a
given problem [49]. This analysis is rather crude. It is only meant to give a
rough quantification of the effect of various factors on cost. Thus the expres-
sions for costs derived here should not be taken to match closely with costs as-
sociated with actual numerical solutions.

Let us define:

n = the number of integrated variables

Nateps = number of integration steps needed to complete an integration task
Cint = cost (average) of doing one integration step

cr = cost of evaluating one derivative function and

ns = number of derivative function evaluations per step

If (2.2) is directly integrated, then 7 = n. Ny depends on the problem
solved, the method used and the way the method is implemented. It has been
generally observed that RK45 takes much larger steps than Adams and that

[Nsteps] adams = 2[Nsteps|rias (4.1)
is a good estimate. The C,, is given by [49]
Cit = ﬂo + ﬁlfl’ (4-2)

where B, and B, are constants associated with the integration method and the
way it is implemented. Using the data of Shampine et al. [49] obtained from
detailed numerical testing it is possible to roughly estimate f§, and §, for the
RK45 and Adams codes of [4]. Such values are given in Table 2. Note that
the values are much bigger for Adams. The value of r, is

6 for RK45;
nf = i (43)
2 for Adams.
Thus, if the aim is to integrate (2.2) directly,
integration cost = Nyeps(Cint + 17Cr). (4.4)
Table 2
Constants associated with Ci
Integration code B B
RK45 85.71 40.0
Adams 292.06 62.86

B, and B, are in number of equivalent arithmetic operations.
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By (4.1) and Table 2 the term Ny, Ciy is much bigger for Adams. However the
remaining term, Nyepsttsc is smaller for Adams. Thus, the choice of method for
efficient integration depends on how big ¢, is in comparison with Cj,.. A good
rule of thumb is to use RK45 whenever the derivative function is defined by
simple expressions and is cheap to compute. This is typically the case in control
system simulation. When the derivative function is expensive to evaluate Ad-
ams method is more efficient. Such a case usually occurs when each derivative
function evaluation involves the solution of a subproblem such as nonlinear
equation solving; for example, the ODE in (3.9).

Before comparing the efficiency of the various approaches let us look at oth-
er factors of comparison. Interpolation for x is much easier to do with inexact
constraint stabilization approach (ICS) and ECS than with others [50]. Consid-
er next, the ease of implementation, i.e., the programming effort needed to
modify an available ODE code so that it solves the vector field (2.1), (2.2).
The ordering of the approaches with respect to increasing difficulty of imple-
mentation is: ICS, PA, ECS, TP and CP. ICS only requires the programming
of (3.21) and (3.22). TP needs the implementation of Procedure TP and the
steps for forming a parameterization and checking its validity. Both ICS and
TP do not require any alteration of the ODE code. PA needs the implementa-
tion of Step 2 of Procedure PA and the proper insertion of this extra code at
the end of an integration step of the ODE code. To improve efficiency, ECS
has to incorporate the modifications of DASSL. CP is the most difficult to im-
plement because the extrapolator for z has to be maintained in the same data
structure as that used by the ODE code for storing the interpolant of y. This
requires a thorough understanding of the ODE code.

For efficiency, the choice of approach depends on the problem being
solved. Later we shall make specific recommendations for some of the appli-
cations mentioned already. We now extend the cost analysis which we did for
the direct integration of (2.2) to the solution of (2.1), (2.2) by an approach in
combination with an integration method. The analysis is somewhat crude, but
observations made using it correspond well with those made from numerical
testing.

If (2.2) is stiff, then ECS, which solves the stabilized index two form of Eu-
ler~Lagrange equation using an appropriate modification of the DAE code
DASSL, is the best choice. The solution of CMS with stiffness using CP and
TP is addressed in Refs. [51,52].

Consider the case where (2.2) is nonstiff. Here ECS is quite inefficient com-
pared to others. Suppose one of the approaches other than ECS is used in com-
bination with one of the integration methods, RK45 and Adams. Let C,
denote the cost (average) of one time step of the solution process. It is useful
to classify Cyep as

Cslep = Cint + Cine + Coval; (45)
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where Ciy is the cost (average) associated with the integration method as de-
fined earlier; C,,. the cost (average) required in doing any manifold-correction
computations, e.g., Step 1 of Procedure TP, Step 2 of Procedure PA, and the
computation of the term g!(x)K(x) in (3.22) via (3.21); and C.a the cost of
evaluating the basic functions f, g and g, in one step.

Let us consider these subcosts one by one. Ciy; is given by (4.2) where

- { (n —m) for TP and CP;

n =

n for others. (46)
Actually, when a multistep integration method, such as Adams is used, 7 = n
should be used for CP because it maintains an extrapolator for the dependent
variable set, z, which is nearly as expensive as integrating z.

Next consider the component Cy,.. To avoid a complicated analysis, let us
make the reasonable assumption that on the average, manifold-correction in-
volves the formation and factorization of an m x m matrix and one solution
of a twin triangular linear system of equations (e.g., the operations involved
up to a single iteration of the MNR method applied to implement Step 1 of
Procedure TP). Therefore a good approximation for Cy, is

Coo = { O(nm?)  for PA;

4.7
n,O(nm?) for others. (47)

Here O(nm?) denotes a polynomial in n and m whose highest order term is nm’.
Though it is slightly different for the various approaches, we can take them to
be equal for our analysis here. In fact, for the case of » and m being large,
O(nm?) = nm* is a good estimate, where cost is measured in terms of the num-
ber of equivalent arithmetic operations. Using the assumption on manifold-
correction made here, we can also obtain

(2¢, + c4e) for PA;

4.8
nr(2¢cg + cg) for others, (4.8)

Ceval = nrcr + {
where ¢, ¢, and cg, are, respectively, the costs of evaluating f, g and gx.

Let Nyeps denote the number of time steps needed to solve a given problem.
Given an integration method and a tolerance for it, it is reasonable to assume
that all approaches will require about the same number of steps. Since PA
works with half the tolerance as others, we can use Remark 3.7 and further as-
sume

[NS(CPS]PA = l.].SN, (4-9)

where N is the value of Nyeps for the other approaches.
Putting (4.5)~(4.9) together and using (4.2) we get C, the cost of solving
2.1), 2.2) as
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( N[By + Bi(n — m) + n,O(nm*) + npep + np(2cq + cgo))
for TP and CP;
c— | LISN[By + Byn + O(nm?) + nscsr + (2¢, + ¢ (4.10)
for PA;
N{[Bo + Byn + nsO(nm?) + nres + np(2c, + ¢
L for ICS.

Thus C is an interplay of several factors. If we take the effect of C..; on C to be
roughly the same for all approaches and so compare only the costs, we can
make the following observations.

1. TP and CP are more efficient than ICS and ECS; the difference in their costs
however, is only §§,m per step.

2. When the ratio m/n is bounded below by some positive constant and 7 is
large, then the dominating term 1.15NO(nm?) in the cost of PA is smaller
than the dominating term, Nn,O(nm?) in the cost of the other approaches.
In such a case, PA is much more efficient than the others. This is especially
true when the RK45 method is used for integration.

3. For small n and m, TP and CP have a slight edge over PA because they in-
tegrate only (n — m) variables. For a specific problem, a user can make a rea-
sonable decision on the choice of an efficient approach by: taking
O(nm?) = nm? (in number of multiplies); using Table 2; and perhaps includ-
ing estimates of ¢y, ¢, and ¢, for his problem in (4.10).

Let us now make specific recommendations for some of the applications
mentioned. In control systems simulation, an f-evaluation is usually cheap.
So it is best to use RK45 for integration. PA is a good approach for use with
RK4S. For CMS the situation is opposite since each f-evaluation requires
O(n?) effort and so it is expensive. Adams is the appropriate choice for integra-
tion. For small n, m, TP and CP are suitable. However, for large n, m (in most
practical CMS # is large and the ratio m/n is 0.3 or even bigger) PA should be
preferred. Similar choices hold well for homotopy curve tracing. Since accurate
curve tracing is unimportant for homotopy methods, large tolerances should be
used [53]. For the numerical curve tracing problem arising in geometric mod-
eling, efficiency is not a key factor because solutions are usually done during
the pre-processing stage. What is more important is to minimize Nyeps. Nyeps de-
notes the number of ‘curve patches’ that form the approximate curve of inter-
section, and, these are involved in on-line computations such as checking the
intersection of the curve with another surface. By (4.1), RK45 is the best
choice. By (4.9), other approaches are slightly better than PA.

4.3. Numerical examples

Clearly, it is not possible to single out a particular approach as the most
suitable for solving any vector field. The choice of an appropriate approach-
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integration method combination for a given application has to be made by
looking at special structures in the vector field, by doing the cost analysis of
Section 4.2, and, very importantly, by studying the performance of various
combinations on selected numerical examples. Here we only consider vector
fields associated with CMS. The Euler-Lagrange equation for CMS is given
in the form

M(q)g +J' ()4 = 0(4,9). (4.11)

$(g) =0. (4.12)

The four approaches discussed in this paper are implemented in FORTRAN.
A computer code called DAMES (Dynamic Analysis of MEchanical Systems)
was developed for this purpose. The code DAMES can handle the equations of
the form (4.11), (4.12). The inputs to DAMES are (1) the generalized Mass ma-
trix M(q) (full or diagonal, a flag is provided for this purpose to handle them
efficiently), (2) the function ¢(g) specifying the constraints, (3) the generalized
external forces Q(q, ¢), (4) the Jacobian matrix J and, (5) the function v(q,q).

The Jacobian matrix J can either be provided by the user or may ask the
code to compute the numerical Jacobian. In the case of ECS the function v
need not be specified as it does not involve ¢. A carefully considered and ex-
plicitly stated experimental design is crucial in making valid inferences about
the performance of the mathematical software. Developing a sound experimen-
tal design involves identifying the variables expected to be influential in deter-
mining the code performance, deciding the appropriate measures of
performance. Choosing the appropriate performance indicators is a crucial fac-
tor in computational experiments. We have chosen performance indicators
which are as independent as possible of the problem at hand. The following
performance indicators are common to all the approaches: CPU-CPU Time
(calculated in Micro-Vax — under ULTRIX-32m version 1.2 OS); NF-Number
of Function evaluations (f-evaluations), NS-Number of integration steps to
complete the integration from # to ¢, , NJ-Number of J matrix evaluation,
NI-Average number of iterations taken to solve the nonlinear square system,;
and N¢-Number of ¢ evaluations. Apart from these, the indicators which
are specific to particular approach are: NFK-Number of LU factorizations
(Step 1 of Procedure TP), NT-Number of triangular systems solved (Step 1
of Procedure TP, solving for u in the PA, Step 3 of Procedure ECS), NP-Num-
ber of new TP done. Before discussing the examples let us make the following
remark.

Remark 4.1. As already mentioned, the selection of the stabilizing parameter in
the case of ICS approach is a crucial issue and no clear way of choosing it is
available. So in all the examples the parameter is chosen in the following way.
We start with D = 0 (i.e., integrating just the underlying ODE) and slowly
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increase its value. By looking at the solution plots a proper (optimal) D is
chosen. So while actually comparing the performance indicators of this
approach with the other approaches it is very important to keep in mind the
exercise involved in choosing this optimal D.

In the case of TP approach, choosing the ratio u is very important. Number
of new parameterizations done depends mainly on this optimal choice of u.
Also as already mentioned the number of new parameterizations done also de-
pends on p, the rate of convergence.

Example 4.1 (Simple pendulum). Consider the simple pendulum with the
generalized coordinate g = (x,y)'.The following are the inputs to DAMES.
M(q) = diag(m,m), Q(4,q) = (0,—mg)", ¢(q) =x*+)*~1, J(q) = (2x 2y),
v(¢,q) = —(2xx* + 2y3%), [to,ty] =[0,2]s, m=1Kg, g =981 m/s? x=
lm, y=0m, u=0m/s, v=5m/s

Remarks: The consistent initial condition (CIC) is such that the pendulum is
moved to the horizontal position and is thrown upwards with 5 m/s so that the
pendulum completes two full circles. This system is simulated using the four
approaches PA, TP, ECS, ICS and the results are tabulated in Table 3.

Example 4.2 (Slider-crank mechanism). Consider the elementary model of a
slider-crank mechanism shown in Fig. 1 where the units of length are in
meters. The crank (body-1) rotates without friction about an axis perpendic-
ular to the x—y plane. The connecting rod (body-2) is constrained so that its
center point slides without friction along the x-axis. The polar moment of
inertia of bodies 1 and 2 are J; and J, kg m?, respectively, and the mass of
body-2 is my (kg). A constant torque 7 = 10 N m is applied to body-1. The
generalized coordinate vector ¢ = (¢;, x2, ¢,)". Let us now define the inputs to
DAMES.
M(@) = dingUi, ma, ) J(@)= | o L SR,
_lcosg; +2cosdy — x>
$la) = [ sin ¢, + 2 sin ¢, }

.oy ¢ . [cos¢, ¢1+2cos¢ 432]
0(¢,9) = (T, 0, 0)', v(q’q)_[sin(ﬁi ¢5%+2sin¢22¢"%2 '

Time interval [to,¢;] =[0,2]s J; =1, /, =2, my =2. The CIC are ¢, =
n/4 rad, x, = 2.5779 m, ¢, = —0.3613 rad and zero initial velocity. This system
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Table 3
Example: Simple pendulum
PA TP ECS ICS

TOL =10-¢
NF 228 314 - 183
NS 114 157 473 92
NJ 233 727 528 188
N¢ 192 810 1356 188
CPU 3.9 5.0 6.3 1.7
NI 1.6 1.8 1.99 -
NT 610 1169 2912 -
NFK - 359 - -
NP - 8 - -

TOL=10"*
NF 132 255 - 113
NS 61 128 287 74
NJ 137 653 358 118
N¢ 120 682 728 118
CPU 25 4.4 4.8 1.3
NI 1.82 22 1.99 -
NT 370 1001 1276 -
NFK - 320 - -
NP - 12 - ~

TOL =102
NF 70 82 - 60
NS 35 41 135 31
NJ 75 410 173 65
N¢ 64 402 360 65
CPU 1.4 1.9 2.0 0.8
NI 1.82 1.92 1.98 -
NT 196 610 990 -
NFK - 242 - -
NP - 16 - -

Fig. 1. Elementary slider-crank mechanism.



R Sudarsan, S.S. Keerthi | Appl. Math. Comput. 92 (1998) 153-193 185
Table 4
Slider-crank mechanism
PA TP ECS 1CS
TOL =10-¢
NF 286 200 - 266
NS 145 100 580 135
NJ 291 455 468 271
N¢ 233 468 3372 271
CPU 5.7 6.3 79 3.8
NI 1.61 2.1 22 -
NT 748 693 4817 -
NFK - 225 - -
NP - 4 - -
TOL =10+*
NF 162 121 - 166
NS 83 61 398 83
NJ 167 275 386 171
N¢ 126 287 2340 171
CPU 3.0 39 5.1 1.5
NI 1.51 1.97 22 -
NT 410 423 3100 -
NFK - 136 - -
NP - 2 - _
TOL =102
NF 68 55 - 68
NS 36 28 186 36
NJ 73 143 172 73
No 63 165 988 73
CPU 1.8 1.9 31 1.0
NI 1.75 1.97 2.3 -
NT 190 234 1686 -
NFK - 70 ~ -
NP - 2 ~ -

is simulated using the four approaches PA, TP, ECS, ICS and the results are

tabulated in Table 4.

Example 4.3 (Three link cylindrical coordinate manipulator). In this a three link
coordinate cylindrical manipulator shown in Fig. 2 is considered. We assume
that the joints of the robot are all rigid.

The end of the robot is constrained to move in one-dimensional path, name-
ly a circle in the x—z plane with y being a constant. The constraint function
in Cartesian coordinates is given by (y—0.169=0, x2+2> —d =0),
d = 0.221423. The generalized coordinate vector g = (qi, 92, ¢3)° as shown
in the Fig.2. The inputs are: M(q) = diag(J; +J5 +Js + ma(gs + 1)’

ms + msy, ma)
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Fig. 2. Three link cylindrical coordinate manipulator.

2m3(qs + 13)4143
0(q,9) = (my +ms3)g
—m3(qs + 13)47

J(g) = (g3 +15) cos g, 0 sin g;
—2(gs + 13)2 cosq sing; 2q, 2(q;+ 1) Cosqu )

b(g) = (g3 + 13)sing; — 0.169
D= | (g3 + 13)* cos?qy +¢;—d)
(g3 + 13) sin g1 ¢{ — 2cos g1 4,45
v(§,q) = | 2(qs + 1)* cos 2q; ¢} — 243 — 2 cos’ q g3+
4(gs + I3) sin 2q1 4,43
Time interval [t,t]=[0,4] s, my=1kg, my=2kg, J; =0.1 kg m?,
J=02kgm? J;=0.1kgm? [3=02 m CIC ¢ = 048607, g, = 0.34512,
g3 = 0.16176 and zero initial velocity. The control law for stabilizing the system
to the equilibrium point, g. = (0.436, 0.3, 0.2)', designed using a linearized ap-
proach [54] is given by
u =0.363 — 3.655(q; — 0.436) — 4.181(g2 — 0.3) + 3.136(g3 — 0.2)
—0.455¢, — 2.167¢, + 1.0834;
29.4 — 15.938(g, — 0.436) — 18.229(q, — 0.3) + 13.672(¢g3 — 0.2)
—2.167¢, — 10.325¢, + 5.163¢,
0.423 + 8.267(q, — 0.436) + 9.455(¢2 — 0.3) — 7.091(g; — 0.2)
+ 1.083¢, + 5.163¢, — 2.5814,

This system is simulated using the four approaches PA, TP, ECS, ICS and the
results are tabulated in Table 5.

Example 4.4 (Quick-return mechanism). As an example of the many compound
mechanisms that arise in practice, the quick-return mechanism of Fig. 3 that
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Table 5
Three link cylindrical coordinate manipulator
PA TP ECS ICS

TOL = 10-¢
NF 302 378 - 298
NS 151 183 340 150
NJ 308 1034 328 303
No¢ 260 1030 1680 303
CPU 6.1 7.2 9.1 3.1
NI 1.72 3.1 22 -
NT 822 1370 2218 -
NFK - 390 - -
NP - 4 - —

TOL=10"*
NF 190 210 - 178
NS 95 105 256 90
NJ 195 460 240 183
N¢ 155 472 1396 183
CPU 3.8 4.5 6.2 1.9
NI 1.63 2.1 2.5 -
NT 498 698 1548 -
NFK - 235 - -
NP - 6 - -

TOL=10"
NF 85 110 - 88
NS 43 55 105 45
NJ 91 245 98 93
N¢ 79 220 512 93
CPU 2.0 2.5 3.8 1.1
NI 1.8 1.8 2.0 -
NT 242 394 624 -
NFK - 130 — -
NP - 8 - -

represents a shaper is considered. With counterciockwise rotation of the crank
(body-3), cutting occurs as the tool (body-6) moves to the left through the
workpiece. The quick-return stroke of the tool occurs as it moves to the right.
In the model of Fig. 3, each link is modeled as a body. The elements of the
model are as follows: Body-1 is ground, and the body-fixed frames are as
shown in the figure and the constraints are defined in Table 6. The generalized
coordinate vector ¢ = (x;,y;,z)' fori=1,...,6.

M(q) = diag(m,', mi, m,l?) fori= l, RPN ,6,

Q(q’ q) = (0’ —mg, 07 07 —myg, 03 05 —ms3g, T37 Oa —mag, 0) 0,
—msg, 07 07 —Mmeg, 0)t7
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Fig. 3. Quick-return mechanism.

Table 6

Inertial properties and CIC

No. 1 2 3 4 5 6

Mass 1 100 1000 5.0 30 60

MI 1 100 2000 0.5 10 1.5

x 0 0.91822 0 1.35993 0.91296 -0.01053
y 0 1.77676 2 2.63293 3.77637 3.99923
¢ 0 1.90380 0.4356 190380 0.23680 0

¢(q) (x1, 01, @1,x1 —x2+2€08 Py, 31 — 32 + 2810 @y, X1 — x3 — 2sin ¢y,
VI =y +2c08 ¢y, x3 — x4+ 1.5c08 @3, y3 — 34 + 1.5sin ¢;.
x5 —x2 +0.95 cos ¢ps — 2 cos ¢,,¥5s — y» + 0.95 sin ¢5 — 2 sin @5,
x5 — xg — 0.95 cos ¢s,
Vs = Y6 — 0.95 sin ¢s, (x4 — x2) sin @, — (34 — y2) €08 @,
sin (@ — ¢,), (x6 — x1) sin ¢y — (v — y1) cos ¢y, sin (¢ — é1))".

The nonzero elements of the Jacobian matrix J(g) and v(4,q) can be com-
puted easily.

Remarks: Dynamic analysis is carried out with a slider mass mg = 50 kg, a
torque T3 = 165,521 N m applied to flywheel, and flywheel polar moment of
inertia (MI) is 200 kg m? and with initial velocity zero. The applied torque is
selected so that the work done in one cycle of operation (2n7;) is equal to
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Table 7
Quick-return mechanism
PA TP ECS ICS

TOL=10"%
NF 2160 3112 - 2082
NS 1080 1556 3574 1044
NJ 2060 9512 3787 2087
N¢ 2054 9482 11232 2087
CPU 77.2 86.3 98.5 52.2
NI 1.98 2.5 23 -
NT 6190 12012 18612 -
NFK - 4312 - -
NP - 14 - -

TOL=10"*
NF 1272 1876 - 1191
NS 686 938 1932 599
NI 1173 5724 1860 1196
N¢ 1166 5430 8632 1196
CPU 45.5 58.9 78.7 29.9
NI 1.98 1.99 2.3 -
NT 3524 9876 12712 -
NFK - 2842 - -
NP - 16 - -

TOL=10"
NF 712 1012 - 676
NS 356 506 1208 346
NI 682 3814 1194 681
N¢ 745 3712 5977 681
CPU 243 348 48.2 17.1
NI 1.9 2.0 2.1 -
NT 1930 6812 8308 -
NFK - 1864 - -
NP - 10 - -

the work done in cutting the workpiece. This system is simulated using the four
approaches PA, TP, ECS, ICS and the results are tabulated in Table 7.

4.4. Observations and recommendations

From the tables it appears that ICS is the most efficient approach. But, as
already remarked (Remark 4.1) the selection of the stabilizing parameter
D = o in the case of ICS approach is a crucial issue and no clear general
way is available. In the examples we have tried, the parameter « is chosen in
the following way. We start with o =0 (i.e., integrating just the underlying
ODE) and slowly increase its value. By looking at the amount of constraint
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violation and the number of failed integration steps a proper (optimal) « is cho-
sen. So while actually comparing the performance indicators of this approach
with the other approaches it is very important to keep in mind the huge exercise
involved in choosing this optimal «. Since the selection of « is highly problem
dependent the ICS is not a suitable approach for general purpose use. There-
fore in our comparison of the different approaches we exclude it.

Based on the data from the numerical examples we make the following ob-
servations. (1) In terms of all the performance indicators, PA is the best, in
spite of the 1.15 factor in Eq. (4.10). (2) ECS takes substantially more integra-
tion steps for all the examples as expected. (3) NJ, N¢, and NT are substantial-
ly more for TP and ECS and so the effort is more. (4) Finally in the case of TP,
the parameter NFK (Step | of Procedure TP_CMS) reflects the extra effort in
the case of TP and is of the order NS. Also, choosing the ratio y is very impor-
tant. The number of new parameterizations done depends mainly on this opti-
mal choice of u. Also as repeatedly mentioned the number of new
parameterizations done also depends on p, the rate of convergence.

Finally we recommend the following. To start with, solve the given CMS
using ICS approach with some a # 0. If the integration fails repeatedly to ac-
cept a step and the stepsize becomes too small and the minimum stepsize is
reached, and also if the constraint violation is too large, abort this approach.
Now start the more accurate and involved approach PA and use it with stiff-
ness detection in the integration routine. The ideas in Refs. [55,56] can be used
for this purpose. The code DAMES detects stiffness using these ideas. If stiff-
ness is detected, abort PA and use ECS.

5. Conclusion

The PA proposed in Ref. [50] overcomes some of the difficulties faced by the
other existing approaches. The salient features of this approach are: (i) it de-
couples the process of integration from the process of correction to the con-
straint manifold; (ii) it solves the vector fields in terms of the original
coordinates and hence the integration tolerances for the original variables
can be specified directly; and (iii) it does not involve any coordinate transfor-
mation which has to be carried out in some of the other approaches and hence
there is no necessity for integration restart.

An important issue concerning integration error control has not been care-
fully addressed in the literature for Parameterization approach. In this paper
we suggest a way for specifying these tolerances which is very important in
any good implementation of the Parameterization approach.

We argue that the PA is better than the Parameterization approach. The
chief defects of the Parameterization approach are that: (i) each f evaluation
requires the solution of an m-dimensional nonlinear system of equations; and
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(ii) since the parameterization is local, a change in parameterization may be re-
quired during the solution, leading to an integration restart with associated in-
efficiencies. The PA does not suffer from these defects. It requires only one
solution of an m-dimensional nonlinear system of equations in each integration
step (Step 2 of Procedure PA). Also, it does not require any integration restarts
because it deals with the full ODE system in (2.2). The Parameterization ap-
proach has the advantage that it integrates only the (n ~ m)-dimensional sys-
tem of ODEs, whereas the PA requires the integration of the n-dimensional
system of ODEs. This advantage, however, is only slight because the difference
in the integration overhead costs of the two approaches is only O(m) whereas
the cost of every extra m-dimensional nonlinear system solution required by the
Parameterization approach is O(m?). The four approaches (PA, TP, ECS, ICS)
have been carefully coded and compared on some test problems. The PA has a
number of advantages over existing approaches. The qualitative comparisons
are mentioned above,
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